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Abstract— As the fast development of GPU, people tend to 
use it for more general purposes than its original graphic 
related work. The high parallel computation capabilities of 
GPU are welcomed by programmers who work at medical 
image processing which always have to deal with a large scale of 
voxel computation. The birth of NVIDIA® CUDA™ technology 
and CUDA-enabled GPUs brought a revolution in the general 
purpose GPU area. In this paper, we propose the 
implementation of several medical image segmentation 
algorithms using CUDA and CUDA-enabled GPUs, compare 
their performance and results to the previous implementation in 
old version of GPU and CPU, indicate the advantages of using 
CUDA technology and how to design algorithm to make full use 
of it.  
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I. INTRODUCTION 
ompared to CPU, GPU has more powerful performance 
in parallel processing and lots scholars had studied the 
GPU-based image processing[1] and visualization[2] 

recent years. It is showed in the related researches that GPU 
technologies (Cg, HLSL, etc.) are powerful weapons in 
dealing with computation of large scales of data in the 
medical image processing field. However, such previous 
GPU technologies always bring difficult and massive 
programming work. The limitation in the languages and the 
native insufficiency of the design may cause unclear coding, 
imprecise computation and instable system. For example, in 
previous GPU and related technologies, data types are based 
on the size of the registers in GPU memory. Compared to 
CPUs they offer only a limited instruction set consisting 
primarily of mathematics operations which are often graphics 
specific and in general accept as input a limited number of 
32-bit floating point 4-vectors. The fragment processor can 
output only 4 floating point 4-vectors, usually representing 
colors [3]. This defect may result in a large scale of waste of 
memory allocation for unnecessary computation and lead to 
inefficiency. Codes, variables and procedures that handle 
data input/output transfer between host and device are fixed. 
Data computation and parallel arrangements inside the device 
are rigid and difficult to learn. 

In 2007, the birth of NVIDIA® CUDA™ technology and 
CUDA-enabled GPUs brought a revolution in the general 

purpose GPU area. NVIDIA® CUDA™ technology is a 
fundamentally new computing architecture that enables the 
GPU to solve complex computational problems in consumer, 
business, and technical applications. CUDA (Compute 
Unified Device Architecture) technology gives 
computationally intensive applications access to the 
tremendous processing power of NVIDIA graphics 
processing units (GPUs) through a revolutionary new 
programming interface. CUDA also provides orders of 
magnitude more performance and simplifies software 
development by using the standard C language [4]. 
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Segmentation is a fundamental problem in the medical 
image analysis. The general segmentation problem is the 
process of partitioning an image or data-set into a number of 
homogeneous segments [5]. Although the methods of image 
segmentation have been improved significantly recently, it is 
still a very difficult problem in practice [6]. 

In this paper, CUDA technology is employed to implement 
different segmentation algorithms over real medical images 
in the experiments and the results are listed. A comparison 
between CUDA and previous GPU technologies are held. 
Advantages and disadvantages over CUDA are analyzed. 

II. METHODOLOGY 

A. Memory arrangement 
In CUDA framework, the GPU is viewed as a compute 

device capable of executing a very high number of threads in 
parallel. The large scale of original resource data in different 
format (float, double, int, long, short, etc.) are uploaded from 
host to device at a higher speed than previous GPU version 
and then stored as an array in the global memory of the device. 
It is totally up to programmer to manipulate and access the 
data array agilely through thread block and grid of thread 
blocks, which are organized inside the GPU device by CUDA. 
For example, we can assign a grid of 512*256 (2 dimension) 
blocks with 512*1*1 (viewed as 1 dimension) threads inside 
each of its block for a 512*512*256 resource brain image. 

Once the threads and blocks assignment is done, the 
position of each thread can be directly located by using 
threadIdx and blockIdx where threadIdx.x, threadIdx.y and 
threadIdx.z respectively stand for the current thread index of 
X, Y, Z dimension inside the current block and blockIdx.x, 
blockIdx.y respectively stand for the current block index of X 
and Y dimension inside the current grid. In above example, 
let length be 512 (the first dimension in the block), let width 
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be 512 (the first dimension in the grid), then concurrent 
access to each voxel of the image can be easily realized by 

xthreadIdxlengthxblockIdxwidthyblockIdxoffset .)..( +⋅+⋅= (1) 
GPU data allocation schemes vary according to different 

segment methods. Multiple blocks schemes reduce thread 
cooperation, because threads in different thread blocks from 
the same grid cannot communicate and synchronize with each 
other. In this situation, all data operations are not completely 
parallel. A device usually runs all the blocks of a grid 
combining both sequentially and in parallel. Compared to the 
previous example, a balance factor n, which stands for the 
voxel number that each thread handles, is introduced to 
control the amount of serial processing in each parallel 
processing thread. 
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Here K stands for the time cost of each thread operation, 
syncthread(i,j) (K）stands for the total time cost in synchronizing 
a block with ji ⋅  threads. Another symbol l  stands for the 
number of the operation that each voxel requires and symbol 
 stands for the average time cost of a single operation. The 

restriction on block dimension (x,y,z) and thread dimension 
(i,j) varies on different NVIDIA GPU hardware types. 
Basically there are fixed upper bounds for x*y*z blocks and 
i*j threads. Let the total voxel number in the resource medical 

image be v, then jizyx
n
v

⋅⋅⋅⋅= . Since x, y, z, i, j depend 

on the hardware and l, t depend on the algorithms we design, 
our goal is to find a proper n which results a minimum time 
cost T in both the parallel and serial processing. 

B. Segmentation algorithms implementation 

Segmentation algorithms can be divided in to two major 
groups as model based and region based [7]. We select and 
implement region growing and watershed methods of region 
based group as a test of CUDA implementation in 
segmentation field. The level-set method [8] of model based 
group and other complex algorithms are still under test. 

1) Region Growing: In order to make full use of the parallel 
computation capability of GPU, it is recommended to select 
as many seeds of different parts of the image as possible. 
Region growing starts from each seed inside the image. We 
compare and label all six neighbors (up, down, left, right, 
front, back) of each voxel based on intensity or other defined 
rules. Data of each voxel can be conveniently located in 
CUDA by using (1) since the image data has been allocated 
into GPU memory according to a specific scheme. In the 
example of (1), the offset of six neighbors of each voxel in the 
GPU memory can be easily calculated by 
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However, multiple seeds can lead to over growing problem 
and growing competition. In order to solve the over growing 
problem in some images where different parts still have 
connections after the thresholding, several times of erosion 
and dilation can be of great help[9]. Both erosion and dilation 
operation need six neighbors information from (2) in order to 
decide whether current voxel is eroded or dilated.  

Since the cost of adding seeds are not as expensive as in 
CPU, we can easily regain the lost parts in the branches which 
are missing during the erosion by adding a seed there. New 
Seeds 

),('),,( 21211 nnn SSSGSSSGS LL −∈+  
Here Sn stands for seed voxel, G(S1,S2 … Sn) stands for the 

result voxel set after region growing without erosion and 
dilation from seeds S1, S2 … Sn.  G’(S1,S2 … Sn) stands for the 
result voxel set after region growing using erosion and 

 
Fig. 2.  Region growing on a 512*512*289 abdomen image with 7 
seeds located in different parts of the image after 120 iterations by 
CUDA on NVIDIA Geforce 8500 GT. The result includes heart(red), 
artery(green) and bone(silver). In this experiment, when n=3*3*3, the 
total time cost reaches the minimum 12.875 seconds. 

 
Fig. 1.  Medical image data allocation for memory arrangement in 
CUDA. Three dimensional original medical images (CT, MR, etc.) 
composed by a series of slices are organized in blocks of threads and 
grids of blocks. The number of elements that handled by a single thread 
is easily and completely decided by programmers. 
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dilation from seeds S1, S2 … Sn. 

The final segmentation result is stored in an array of 
specific data type in GPU memory, which is to be transferred 
back to host CPU when display is needed. 

2) Watershed: Like common watershed algorithm, gradient 
values of the original image are obtained and gauss blurring is 
deployed before immerse the lowest gradient. Both 
operations can be conveniently achieved in GPU by some 
widespread methods. Watershed algorithm starts with 
immersing from the lowest gradient value voxel instead of 
region growing from seeds [10]. The immersing rule also 
takes neighbor voxel into consideration: 

(1) When all neighbors has not been labeled (at the higher 
level), then current voxel is labeled as a new basin. 

(2) When all labeled neighbors belong to the same basin or 
watershed line, label the current voxel as the same basin with 
its neighbor. 

(3) When two labeled neighbors belong to different basin 
exist, label the current voxel as the watershed line. 

Since CUDA can exactly handle and locate each voxel in 
the device at the same time. It is no need to sort the gradient 
value and create a FIFO queue to handle the waiting voxel in 
the iteration. However, the previous serial watershed 
algorithm is not suitable for the parallel computational ability 
of CUDA. Over segmented problems are more serious after 
immersing operation in CUDA because basin number 
increases during the parallel labeling. Some data structures 

have been abandoned and improvement and adjustment in 
immersing step has been made.  

In order to solve the common over segmented problems in 
watershed method, the multi-level immersing watershed 
method [7] can be improved to be implemented in our 
experiment. 

),(' hpDiffhh +=  

 
Fig. 3.  Region growing on a 256*256*256 brain image with 6 seeds 
after 40 iterations by CUDA on NVIDIA Geforce 8500 GT. In this 
experiment, when n=1*1*1, the total time cost reaches the minimum 
2.435 seconds 

The new height h’ of the gradient value of each voxel to be 
immersed in current iteration is the previous h plus Diff(h,p), 
where  
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Here Diff(p,h) is dynamically calculated after each 
immersing iteration. I(p,h) and I(q,h) respectively stand for 
the intensity or gradient value of the voxel set p and their 
neighbor voxel sets q at the current height h. NG(p) stands for 
the neighbor area within a specific distance from voxel p in 
the graphic G. The computation of large scale sum of the I(p,h) 
and I(q,h) of the whole image makes full use of the parallel 
capability of CUDA. 

After immersing to the highest gradient voxel, watershed 
algorithm stops. Post processing includes merging some 
basins and remove irrelevant watershed lines. 

III. EXPERIMENTAL RESULTS 

Fig. 5.  Result after manually combining specific regions of Fig. 4. 
Related regions are selected by users in the post process step. Selected 
regions are combined and marked with different colors (blue, green, 
gray, brown) according to different requirements for diagnostic uses. 

Fig. 4. Multi-degree immersing watershed method on the same image 
of Fig. 3. Superabundant regions (2871 regions in this image) caused 
by over segmented is still a serious problem in this image although 
multi-degree immersing watershed method is employed and efficiency 
is improved. However, such problem is more acceptable in small 
images like brain than in large images like abdomen. In order to get the 
specific region, post processes on this result is needed. Interactive and 
manual operation is also provided to users. 

Our experiments of different segmentation algorithms are 
employed on NVIDIA Geforce 8500 GT with 256MB global 
memory. Other configurations are Windows-XP Professional 
operation system, Intel Pentium D 2.80GHz, 1.50GB RAM. 

A. Region Growing 
In region growing algorithm, thresholding, erosion and 

dilation are employed on abdomen image (Fig. 2) and brain 
image (Fig. 3). It is indicated in the experimental result that 
CUDA takes little advantage on efficiency over Cg on large 
size data. However, CUDA has an obviously better 
performance on multiple seeds growing for multiple parts in a 
single image than serial CPU. 

B. Multi-Degree Immersing Watershed 
In multi-degree immersing watershed algorithm, 

immersing rules are strictly followed although the current 
immersing height is dynamically calculated every iteration. In 

84

Authorized licensed use limited to: Shanghai Jiao Tong University. Downloaded on July 27,2010 at 03:10:35 UTC from IEEE Xplore.  Restrictions apply. 



  

this experiment, Cg technology was not employed because of 

lack of resource. Experiment on abdomen image returns an 
unsatisfied result with large amount of over-segmented 
regions and needs additional post process. However, the 
result of CUDA and CUDA-enabled GPU on brain image 
(Fig. 4) apparently exceeds the result of CPU that proposed 
by Shengcai Peng[11]. It is showed in the result (2871 
regions left) that although CUDA technology can improve the 
parallel computation, this feature is not entirely suitable for 
multi-degree immersing algorithm. Post process[11], which 
includes region selection, combination and other operations 
(Fig. 5), is recommended for diagnostic uses.  

IV. CONCLUSION 
In this paper, we introduced novel implementations of 

segmentation algorithms based on a novel technology and 
new type hardware. Using CUDA technology and 
CUDA-enabled GPUs we can easily implement basic 
segmentation algorithms in different operating system and 
integrate them into different framework. However, the 
advantages in performance and efficiency on CUDA over old 
version GPU with Cg or HLSL and simply CPU depend on 
several factors. 

1) Allocate the voxel data of the resource medical image 
into threads in GPU memory properly. Try to handle as much 
data as possible at each computational iteration cycle and try 
to balance the parallel processing and serial processing. 

2) Make full use of every block in the limited grids, since 
the limitation of number and dimension of the threads in a 
block is  more rigid than the limitation of the blocks in a grid. TABLE I 

Experiment on Region Growing Method 

Hardware 
configuration 

ABDOMEN IMAGE / 
512*512*289 

Brain image / 
256*256*256 

CUDA / NVIDIA 
Geforce 8500 GT 

12.875 sec (7 seeds, 
120 iterations) 

2.435 sec (6 seeds, 40 
iterations) 

Cg / NVIDIA 
Geforce 6800 

13.62 sec (16 seeds, 
120 iterations) 

4.42 sec (16 seeds, 60 
iterations) 

Intel Pentium D 
2.80GHz 

21.034 sec(7 seeds, 
100 iterations) 

Not implemented 

Experiment using Intel Pentium D CPU on brain image was not 
implemented. 

In the experiment of region growing method, the number and position of 
seeds are selected by user.  

Future work includes improvement of the current 
segmentation algorithms to be better implemented in new 
CUDA standard 1.1. Another work is to design more efficient 
methods and implement more complex algorithms like 
level-set and Snake. 
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TABLE II 
Experiment on Multi-Level Watershed Method 

Hardware 
configuration ABDOMEN IMAGE Brain image 

CUDA / NVIDIA 
Geforce 8500 GT 

155.965 sec 
(512*512*289) 

45.223 sec 
(256*256*256) 2871 
regions 

Pentium 4 
2.4GHz, 2GB 
RAM 

Not implemented 115 sec 
(181*217*181) 850 
regions 

Experimental result of Pentium 4 CPU on a 181*217*181 brain image is 
proposed bv Shengcai Peng[11].   

Result of CUDA on 512*512*289 abdomen image does not include 
0.281 sec + 0.293sec data transfer times. 

Different data arrangements cause different memory allocations. While it 
is out of memory on GPU for a whole image, user needs to separate the data 
into parts and transfer them between host and device one by one. 

Time cost in post process of the brain image is not included in the result.
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